|
An artist’s impression of gravitational waves generated by binary neutron stars. Credits: R. Hurt/Caltech-JPL |
For the first time ever, scientists have observed ripples in the fabric of spacetime called gravitational waves which confirms a major prediction of Albert Einstein’s 1915 general theory of relativity.
The gravitational waves caused by the collision of two black holes were detected on September 14, 2015 at 5:51 a.m. Eastern Daylight Time (09:51 UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington that are funded by the National Science Foundation (NSF).
Based on the observed signals, LIGO scientists estimate that the black holes for this event were about 29 and 36 times the mass of our Sun, and the event took place 1.3 billion years ago. About 3 times the mass of the Sun was converted into gravitational waves in a fraction of a second—with a peak power output about 50 times that of the whole visible universe. By looking at the time of arrival of the signals—the detector in Livingston recorded the event 7 milliseconds before the detector in Hanford—scientists can say that the source was located in the Southern Hemisphere.
According to general relativity, a pair of black holes orbiting around each other lose energy through the emission of gravitational waves, causing them to gradually approach each other over billions of years, and then much more quickly in the final minutes. During the final fraction of a second, the two black holes collide into each other at nearly one-half the speed of light and form a single more massive black hole, converting a portion of the combined black holes’ mass to energy, according to Einstein’s formula E=mc2. This energy is emitted as a final strong burst of gravitational waves. It is these gravitational waves that LIGO has observed.
The LIGO detections represent a much-awaited first step toward opening a whole new branch of astrophysics. Nearly everything we know about the universe comes from detecting and analyzing light in all its forms across the electromagnetic spectrum – radio, infrared, visible, ultraviolet, X-rays and gamma rays. The study of gravitational waves opens a new window on the universe, one that scientists expect will provide key information that will complement what we can learn through electromagnetic radiation.
“Our observation of gravitational waves accomplishes an ambitious goal set out over 5 decades ago to directly detect this elusive phenomenon and better understand the universe, and, fittingly, fulfills Einstein’s legacy on the 100th anniversary of his general theory of relativity,” says Caltech’s David H. Reitze, executive director of the LIGO Laboratory.
The new LIGO discovery is the first observation of gravitational waves themselves, made by measuring the tiny disturbances the waves make to space and time as they pass through the Earth.
“In 1992, when LIGO’s initial funding was approved, it represented the biggest investment the NSF had ever made,” says France Córdova, NSF director. “It was a big risk. But the National Science Foundation is the agency that takes these kinds of risks. We support fundamental science and engineering at a point in the road to discovery where that path is anything but clear. We fund trailblazers. It’s why the U.S. continues to be a global leader in advancing knowledge.”